
Web Server Design
Lecture 10 – HTTP/2 and HTTP/3

Old Dominion University
Department of Computer Science

CS 431/531 Fall 2022

Sawood Alam <salam@cs.odu.edu>

Original slides by Michael L. Nelson

2022-11-02

HTTP/1.1 is awesome –
you can’t argue with its deployed footprint.

But there are well-known performance
limitations.

HTTP is not a good fit for TCP

• TCP is designed for long-lived, bulk transfers
– High-handshake costs, TLS adds even more to startup costs
– HTTP requests are short and bursty

• Parallelism needed, but:
– Pipelining has problems with head-of-line-blocking, recovering

from failures
– More TCP connections, more client+server resources to

manage the sockets, bandwidth consumed by TCP overhead
– In practice, browsers limit to six concurrent connections

Parallelism Is Needed Because of Page Bloat

From: https://www.webbloatscore.com/ See also: https://httparchive.org/reports/state-of-the-web

https://www.webbloatscore.com/
https://httparchive.org/reports/state-of-the-web

Parallelism Limits In Practice

From: https://hpbn.co/http1x/

https://hpbn.co/http1x/

HTTP Headers: Metadata >> Data

From: https://hpbn.co/http2/

Here, 15 bytes of json + 352 bytes
of request and response headers

https://hpbn.co/http2/

HTTP/1.1 Optimizations

Image Sprites

Send one large image of all flags, use CSS to “cut out” the flag you need
From: https://daniel.haxx.se/http2/

https://daniel.haxx.se/http2/

Inlining & Concatenation
• Inlining: send small images as base64

https://en.wikipedia.org/wiki/Data_URI_scheme

• Concatenation: put all of your .js/.css files into a single, large
.js/.css file
– Probably sends more than you need
– Small changes in one file means changes in the entire file

https://en.wikipedia.org/wiki/Data_URI_scheme

Domain Sharding

Six connections per domain,
But with the overhead of additional

DNS lookups.

From: https://daniel.haxx.se/http2/

https://daniel.haxx.se/http2/

Evolution from SPDY to HTTP/2
•November 2009: Google begins work on SPDY to address performance limitations of
HTTP/1.1

•September 2010: SPDY supported in Chrome
•January 2011: SPDY deployed for all Google services
•March 2012: Twitter supports SPDY
•March 2012: Call for proposals for HTTP/2
•June 2012: NGINX supports SPDY
•July 2012: Facebook announces planned support for SPDY
•November 2012: First draft of HTTP/2 (based on SPDY)
•August 2014: HTTP/2 draft-17 and HPACK draft-12 are published
•August 2014: Working Group last call for HTTP/2
•February 2015: IESG approved HTTP/2 and HPACK drafts
•May 2015: RFC 7540 (HTTP/2) and RFC 7541 (HPACK) are published

Collected from: https://en.wikipedia.org/wiki/SPDY, https://hpbn.co/http2/

https://en.wikipedia.org/wiki/SPDY
https://hpbn.co/http2/

Google Deprecates SPDY

Quoted in: https://hpbn.co/http2/ Original: https://blog.chromium.org/2015/02/hello-http2-goodbye-spdy.html

“HTTP/2's primary changes from HTTP/1.1 focus on improved performance.
Some key features such as multiplexing, header compression, prioritization
and protocol negotiation evolved from work done in an earlier open, but
non-standard protocol named SPDY. Chrome has supported SPDY since
Chrome 6, but since most of the benefits are present in HTTP/2, it’s time to
say goodbye. We plan to remove support for SPDY in early 2016, and to also
remove support for the TLS extension named NPN in favor of ALPN in
Chrome at the same time. Server developers are strongly encouraged to
move to HTTP/2 and ALPN.

We’re happy to have contributed to the open standards process that led to
HTTP/2, and hope to see wide adoption given the broad industry
engagement on standardization and implementation.”

https://hpbn.co/http2/
https://blog.chromium.org/2015/02/hello-http2-goodbye-spdy.html

High-level semantics of HTTP
don’t change in HTTP/2,

but the method of packaging and transport do.

Binary Framing Layer

From: https://hpbn.co/http2/

No more hand-crafted telnet sessions – boo!!!!!

https://hpbn.co/http2/

Streams, Messages, Frames

From: https://hpbn.co/http2/

Stream: bi-directional connection, with 1 or more
messages

Message: logically complete request or response

Frame: typed, atomic unit of communication

https://hpbn.co/http2/

Request & Response Multiplexing

From: https://hpbn.co/http2/

• Interleave multiple requests in parallel without blocking on any one
• Interleave multiple responses in parallel without blocking on any one
• Use a single connection to deliver multiple requests and responses in parallel
• Remove unnecessary HTTP/1.x workarounds (such as concatenated files, image sprites, and domain sharding)
• Deliver lower page load times by eliminating unnecessary latency and improving utilization of available network

capacity Note: frames cannot be received out of order!

https://hpbn.co/http2/

Stream Dependencies & Weights
A gets ¾ of bandwidth, B gets ¼
A & B are dependent on the “root”
stream (i.e., no dependencies)

C depends on D, service D
first (weights trumped by
dependency)

D before C, C before
A & B, weight A & B
as before

D before C, C & E
equally Before A & B,
weight A & B as before

From: https://hpbn.co/http2/

https://hpbn.co/http2/

Server Push: 1 Request, N Responses

From: https://hpbn.co/http2/

See discussion of HTTP/2 push in:
https://daniel.haxx.se/blog/2018/11/11/http-3/

Conceptually similar to inlining, rel=“preload”, rel=“prefetch”, etc.
Can only push with same-origin policy.

https://hpbn.co/http2/
https://daniel.haxx.se/blog/2018/11/11/http-3/

Header Repetitiveness Allows Compression

From: https://hpbn.co/http2/
Note: headers beginning with “:” are “pseudo-headers” (RFC 7540, 8.1.2.1); or “things-that-should-have-been-headers-in-HTTP/1.1”
Pseudo-headers have to be listed before real headers.

https://hpbn.co/http2/

HTTP/1.1 🡪 HTTP/2 Upgrade

From: https://hpbn.co/http2/

Note:
“h2” = HTTP/2 over TLS
“h2c” = HTTP/2 over clear text TCP

https://hpbn.co/http2/

9 Byte Frame Header

From: https://hpbn.co/http2/

Header Types:
•DATA - Used to transport HTTP message bodies
•HEADERS - Used to communicate header fields for a stream
•PRIORITY - Used to communicate sender-advised priority of a stream
•RST_STREAM - Used to signal termination of a stream
•SETTINGS - Used to communicate configuration parameters for the connection
•PUSH_PROMISE - Used to signal a promise to serve the referenced resource
•PING - Used to measure the roundtrip time and perform "liveness" checks
•GOAWAY - Used to inform the peer to stop creating streams for current connection
•WINDOW_UPDATE - Used to implement flow stream and connection flow control
•CONTINUATION - Used to continue a sequence of header block fragments

Note: frames cannot be received out of order! Stream id, but not frame id.

https://hpbn.co/http2/

Example Binary HTTP/2 Request

From: https://hpbn.co/http2/

https://hpbn.co/http2/

HTTP/3 Network Stack

From: https://daniel.haxx.se/blog/2018/11/26/http3-explained/

HTTP/2 optimizes within TCP context (e.g., binary, streams & frames),
HTTP/3 replaces TCP

https://daniel.haxx.se/blog/2018/11/26/http3-explained/

HTTP/3
• “HTTP-over-QUIC” was renamed to “HTTP/3” (Nov 2018)

– https://daniel.haxx.se/blog/2018/11/11/http-3/
• HTTP/3 became Standard Track RFC in June 2022

– https://datatracker.ietf.org/doc/html/rfc9114
– Deployment is growing gradually

• Major changes:
– Streams are moved from the HTTP layer to the QUIC layer

• HTTP/2 fixes HTTP head-of-line blocking, but not TCP head-of-line blocking
(i.e., streams in TCP can still be held up by dropped TCP packets)

– Since streams are independent, header compression changes
– There is no clear-text version of HTTP/3 (integral TLS 1.3)
– QUIC has faster handshakes than TCP + TLS

https://http3-explained.haxx.se/

https://daniel.haxx.se/blog/2018/11/11/http-3/

